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Abstract

Detailed physically based snowmelt models require a complete set of meteorological
forcing data at the model’s scale. Besides precipitation and temperature, time series of
humidity, wind speed, and radiation have to be provided. The availability of these time
series is in many cases restricted to a few meteorological stations and consequently,5

snowmelt modelling is often highly uncertain. To overcome this dilemma, the suitability
of downscaled atmospheric analysis data for physically based snowmelt simulations in
hydrological modelling is studied. We used the Weather Research and Forecast model
(WRF) to derive spatial and temporal fields of meteorological surface variables as
boundary conditions for four different snowmelt models. The simulations were carried10

out at the point scale and at the catchment scale for the Sieber catchment (44.4 km2),
Harz Mountains, Germany. For the latter, all snowmelt models were integrated into
the hydrological modelling system PANTA RHEI. All models performed well at both
scales. In conclusion, the presented approach is suitable to derive reliable estimates of
snowpack and snowmelt processes as part of water balance and flood simulations for15

catchments exposed to snow.

1 Introduction

The water balance of mountainous or sub-arctic catchments is strongly influenced
by snow cover processes. Due to accumulation of snow during the winter season,
a considerable fraction of precipitation is stored in the snow pack. Rapid snowmelt,20

partially superimposed by rain events, can cause extensive flooding with potential
of damage. Hence, hydrological modelling systems have to incorporate snow
accumulation and melt for water resources management in regions that are affected
by snow processes. In general, two types of snowmelt models are available:

– Temperature index model (also known as degree-day method) and extended25

index models (e.g., Anderson, 1973): these models are “simple and modest”
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(Rango and Martinec, 1995) because only temperature and precipitation time
series are needed. Some extensions also incorporate shortwave radiation input
(Hock, 1999; Pellicciotti et al., 2005).

– Energy balance models include a detailed physically based description for the
surface energy balance of a snow pack (e.g., Anderson, 1968). The process5

based equations require further meteorological time series as input (e.g.,
humidity, radiation, wind speed). In contrast to index melt models, many more
processes can be considered like sublimation losses, which can be relevant for the
alpine water balance (Strasser et al., 2008). Even though some parameterizations
of the energy balance can also be considered as inductive empirical functions10

(Beven, 2012), energy balance approaches are considered to be more reliable
for scenario simulations than simpler index methods (e.g., Charbonneau et al.,
1981; Pomeroy et al., 2007; Walter et al., 2005; Singh et al., 2009; Barry and
Gan, 2011).

There are many physically based snowmelt models available for point scale15

applications (see, e.g., Etchevers et al., 2004; Rutter et al., 2009). Nevertheless,
the temperature index method is widely accepted in hydrological modelling at the
catchment scale (Rango and Martinec, 1995; Seibert, 1999; Beven, 2001). Moreover,
apart from a few exceptions (Kuchment and Gelfan, 1996; Fuka et al., 2012), simple
index approaches outperform energy balance approaches because the latter are20

more sensitive to the quality of meteorological input data (Zappa et al., 2003).
Hence, “inadequate basin-scale hydrologic observations” (Franz et al., 2008) restricts
catchment scale applications of energy balance approaches. This problem of “areal
representativeness of point observations” (Klemeš, 1990) is mostly related to scaling
issues (Blöschl and Sivapalan, 1995). In contrast to point scale considerations,25

regional applications (e.g., watershed hydrology at the catchment scale) require scaling
approaches for observations and models because their scale triplets do not coincide in
most cases (see e.g., Blöschl, 1999, for further details).
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Authors like Bales et al. (2006), Franz (2006), and Jost et al. (2012) suggest
finding new strategies to provide suitable data to drive process based snowmelt
models for catchment scale applications. For instance, Franz (2006) and El-Sadek
et al. (2011) propose (re-)analysis data for hydrological modelling. However, this
type of data does not provide a sufficient spatial and temporal resolution for typical5

applications in hydrological modelling. In consideration of topography, land use and
soil type, regional models of the atmosphere that are also referred to as limited-
area models (LAM) are suitable tools to “add regional detail” to these global scale
(re-)analysis data (Giorgi, 2006). Besides hydrological forecasts and climate impact
studies, successful applications of LAM in hydrological modelling and cryospheric10

research using (re-)analysis data were reported by Kunstmann and Stadler (2005),
Rögnvaldsson et al. (2007a), Rögnvaldsson et al. (2007b), Bernhardt et al. (2010), Liu
et al. (2011), Maussion et al. (2011), Pavelsky et al. (2011), and Mölg et al. (2012). In
addition, globally available datasets can also be considered as valuable information for
predictions for ungauged basins (Sivapalan et al., 2003) and ungauged climates (Merz15

et al., 2011).
In this study, a limited-area model of the atmosphere is applied to obtain hourly

spatially distributed meteorological time series for snowmelt simulations at both the
point and the catchment scale. It is assumed that the meteorological forcing data
generated by a limited-area model by means of dynamical downscaling are physically20

consistent in space and time (Giorgi, 2006) – a basic requirement for physically based
snowmelt models. As reported in the above-cited studies, analysis data are used herein
as input for the LAM. In contrast or extension to other studies that address LAM input,
four independent snowmelt models are applied at the point and at the catchment scale.
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2 Data and methods

2.1 Study area

All simulations were carried out in the Harz Mountains, a low mountain range in the
northern part of Germany (see Fig. 1). The study area covers elevations ranging
from 300 to 1100 ma.s.l. The Brocken (1142 ma.s.l.) is the highest peak of both the5

Harz Mountains and northern Germany. The Harz Mountains delineate the northern
boundary of low mountain ranges in Germany merging into the North European
Plain with elevations below 200 ma.s.l. Despite of the relatively low elevations,
the climatological conditions are similar to those in the Bavarian Alps at elevation
2000 ma.s.l.10

Due to altitudinal differences, considerable gradients in meteorological fields exist
which reflect different climates. The mean annual temperature and precipitation depth
at Clausthal climate station (585 ma.s.l.) are 6.2 ◦C and 1326 mma−1, respectively.
However, the climate at the Brocken (1142 ma.s.l.) is considerably different (2.9 ◦C,
1814 mma−1). All values refer to the period 1961–1990.15

Two sites were selected for the simulations in this study:

– Torfhaus meteorological station (805 ma.s.l.) for point scale applications: besides
temperature and precipitation recordings, a snow lysimeter (2 m2) is available to
provide melt rates. Based on recordings from 2004 to 2012 the mean annual
precipitation depth is approximately 1430 mma−1.20

– Sieber catchment upstream of Pionierbrücke gauging station (340 ma.s.l.) for
catchment scale applications: the upstream Sieber catchment covers an area of
44.4 km2. Soil types of sandy loam and loamy sand over bedrock are prevailing.
About 75 % of the catchment is covered by coniferous forest. Norway spruce
(Picea abies) is the predominant wood species. The remaining parts of the area25

are covered by deciduous trees, meadows, upland moors, and minor settlements.
Due to former mining activities in the Harz Mountains, a system of channels
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redirects water across the watershed boundary. This system of channels is
part of the centuries old Upper Harz Water Management System, which has
been declared a UNESCO world heritage site. The mean annual runoff depth
for the period 1930–2008 is 1095 mma−1. Even though the average monthly
precipitation depth is highest in December, the maximum value of mean monthly5

runoff depth typically occurs in April. This shift between the mean annual courses
of precipitation and runoff depth can be related to snow accumulation during the
winter and snowmelt in spring.

2.2 Selected winter seasons

Two winter seasons were selected from the last decade of observations with high10

temporal resolution for further investigations. The winter season 2005/06 was colder
than average. This holds especially for the period from January 2006 until March 2006.
Moreover, in February and March 30 % above average precipitation was recorded. With
the beginning of April rapid snowmelt occurred due to significant rise in temperature
accompanied by rain. On the contrary, the winter season 2010/11 differs with respect15

to timing of accumulation and melt. In December 2010 the observed temperature
was 5 K colder than the average while precipitation was above average indicating
ideal conditions for intensive snowfall. The highest daily snow depths in the second
half of December observed at Clausthal for the period 1951–2011 were recorded
in December 2010. In early January 2011 the weather changed and above average20

temperatures as well as rainfall were observed throughout the remaining winter season.
In 2011 the spring was exceptionally dry and warm. It is assumed that these differences
in meteorological boundary conditions are sufficient to fulfil the prerequisites of
a differential split sample test (Klemeš, 1986). With this type of test different conditions
for calibration and validation periods are presumed, and therefore, it “allows testing the25

“risky” predictions of a model rather than the “safe” ones” (Seibert, 2003).
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2.3 Dynamical downscaling using WRF

In order to provide meteorological data fields with high resolution in space and time,
a non-hydrostatic limited-area model (LAM) was applied. Warner (2011) states that for
spatial resolutions of less than 10 km a non-hydrostatic model is necessary. The freely
available LAM Advanced Research WRF (Weather Research and Forecast modeling5

system, Skamarock et al., 2008) was chosen for this reason. For convenience, this
LAM is herein referred to as WRF.

A multi-nesting approach setup of the model was established to provide a spatial
resolution of 1.1 km for the study area (see Fig. 2). The first domain (∆x = ∆y = 30 km)
covers central Europe bounded by the North Sea and the Baltic Sea to the north10

and the Alps to the south. Due to further refinements of the grid resolution major
characteristics of the topography of the study area are captured in the fourth domain
(∆x = ∆y = 1.1 km).

The parameterization options of the model are listed in Table 1. A detailed description
of the listed parameterization approaches can be found in the user’s guide (Wang15

et al., 2012) or in the cited literature. Convection parameterizations are only applied
to domain 1 and 2. Moreover, four-dimensional data assimilation (FDDA, Stauffer and
Seaman, 1990) was activated to keep the longterm simulations close to the input data.
This approach is proposed by Lo et al. (2008) although other approaches like the re-
initialization are also common (Maussion et al., 2011; Hines et al., 2011).20

Initial and boundary conditions were obtained from the NCEP FNL Operational
Model Global Tropospheric Analyses dataset (ds083.2) using the WRF “Preprocessing
System” (WPS) which is also described by Wang et al. (2012). This dataset contains
major meteorological variables at the surface and mandatory vertical levels of the
atmosphere on 1◦ ×1◦ grids prepared operationally every six hours (NCEP, 2012a).25

Its temporal availability covers the range from July 1999 to present. To account
for temperature changes in the North Sea and Baltic Sea, additional sea surface
temperature data being available at daily grids with a spatial resolution of 0.5◦ ×0.5◦
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(RTG-SST dataset, Thiebaux et al., 2003; NCEP, 2012b) were also prepared using
WPS.

Finally, hourly gridded meteorological fields with grid spacings of 1.1 km were
simulated using WRF for both the winter season 2005/06 and 2010/11. Surface
meteorological variables that were derived in this manner are listed as follows:5

precipitation intensity, temperature (2 m), specific and relative humidity (2 m), wind
speed (10 m), and shortwave as well as longwave radiation.

2.4 Snowmelt models

Three energy balance snowmelt models and the temperature-index method were
tested at the point and at the catchment scale. All algorithms were originally available at10

the point scale. The following list accounts for the major characteristics of each model.
The reader is referred to the cited literature for a detailed description. Due to the fact
that the Sieber catchment is almost entirely covered by forests, the short descriptions
emphasize the consideration of forest effects on the energy balance.

– The Utah Energy Balance Model Version 2.2 (Tarboton and Luce, 1996) is15

available as open source software and can be obtained via internet (Tarboton,
2012). Originally, the model was designed to carry out simulations for time steps
of 1 and 6 h, respectively. Snow water equivalent and energy content are the
prognostic variables calculated for each time step using a predictor corrector
approach. The model accounts for liquid water and incorporates a simple20

approach to simulate the ground heat flux. Forest cover effects are represented
by one single parameter that reduces wind speed and solar irradiance.

– ESCIMO (Energy balance Snow Cover Integrated MOdel, see, Strasser et al.,
2002; Strasser and Marke, 2010) was originally developed for point scale
applications. Later the model was extended to the fully distributed snow25

model AMUNDSEN (Alpine MUltiscale Numerical Distributed Simulation ENgine,
Strasser et al., 2004), which includes detailed process descriptions, e.g.
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for topography-dependent radiative transfer, gravitational and wind-induced
redistribution of snow, technical snow production or runoff concentration. For
both models a detailed description for snow canopy interaction was added
recently (Strasser et al., 2011). This approach adds subcanopy modifications
to open-site meteorological conditions and incorporates a canopy interception5

model (Hedstrom and Pomeroy, 1998), which builds upon the scaling approach
of Pomeroy and Schmidt (1993) and Pomeroy et al. (1998), for simulating the
sublimation. The dependence of the leaf area index on the interception capacity
is accomplished according to Liston and Elder (2006). All these processes were
also successfully tested at the catchment scale (Warscher et al., 2013). In this10

study, the point scale model ESCIMO including the canopy model is used.

– Walter (2012) provides a spread sheet version of the algorithms described
in Walter et al. (2005). The basic idea of their investigations was to develop
a physically based alternative to the temperature index method without any
additional data requirements. Regardless of its simplicity, the algorithm accounts15

for all relevant components of the energy balance as well as for liquid water
storage and variable density. The original algorithm assumes daily time steps.
In this study, all simulations were carried out for hourly time steps. Therefore,
an adaption of the original algorithm was necessary. Only the radiation balance
has been modified in this study. Instead of using daily minimum and maximum20

temperature as proposed by Walter et al. (2005), time series of shortwave and
longwave radiation were used herein. Several equations like the albedo recession
were adopted for hourly time steps. Like the Utah Energy Balance model the
snowmelt model from Walter et al. (2005) accounts for forest canopy effects by
providing one parameter to scale shortwave radiation.25

– For reasons of comparability and because of its popularity, the temperature-
index approach was also considered. Forest effects on snowmelt can be taken
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into consideration by calibration of the degree-day value that is typically lower in
forests with respect to open sites.

In order to make the snowmelt models available for catchment scale applications, they
have been implemented into a hydrological modelling system. This step is described in
the next section.5

2.5 Hydrological modelling

All simulations at the catchment scale were carried out using the hydrological modelling
system PANTA RHEI for the Sieber catchment. PANTA RHEI has been developed by
the Department of Hydrology, Water Management and Water protection, Leichtweiss
Institute for Hydraulic Engineering and Water Resources, University of Braunschweig,10

in corporation with the Institut für Wassermanagement IfW GmbH, Braunschweig (LWI-
HYWAG and IfW, 2012). At the moment, the model is used for a wide range of tasks in
national and international projects:

– Science: longterm water balance simulations and optimization of reservoir
cascade operation for climate change impact studies (Meon and Gocht, 2012).15

– Engineering practice: integrated flood protection concepts, hydrological design
floods for hydraulic structures.

– Engineering practice: online flood prediction of medium to small catchments, e.g.
by the Flood Early Warning Centre of the German Federal State of Lower Saxony.

Since PANTA RHEI features a graphical user interface (GUI) and geographic20

information system (GIS) data exchange capabilities, it is a 4th generation hydrological
modelling system according to the classification of Refsgaard (1996). With respect
to the level of sophistication of processes PANTA RHEI is a conceptual deterministic
modelling system although physically based enhancements exist like the energy
balance snowmelt models described herein or, optional physically based algorithms25
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for the evapotranspiration and the soil water balance (Förster et al., 2012; Kreye et al.,
2012). It can also be characterized as a semi-distributed modelling system subdividing
the watershed into highly resoluted sub-catchments and subsequently into hydrological
response units (HRUs). The choice of the simulation time step depends on the task.
Common settings range from minutes to one day. For flood simulations, one hour is5

a typical time step (LWI-HYWAG and IfW, 2012).
The vertical column of hydrological processes including snowmelt, interception,

infiltration, and soil water are calculated for every HRU (Fig. 3). Runoff concentration
(including several runoff components) and routing calculations are carried out for the
entire sub-catchment presuming an aggregation of all associated HRUs. For this study10

we used the following configuration: the snowmelt models described in Sect. 2.4 have
been integrated into the modelling system as individual components, each representing
a fully functionable snowmelt model. It is assumed that the governing equations of
micro scale processes are also valid for heterogeneous areal elements. Moreover,
upscaling might also accompany changes in dominant hydrological processes. This15

leads physical parameters to become “effective” parameters (Kirchner, 2006). Their
physical meaning might be blurred to some extent due to these uncertainties.

All other hydrological processes were not changed throughout the study. Interception
is calculated according to the Rutter et al. (1971) model. Infiltration and the soil
water balance were simulated in a simplified way using a modified curve number20

approach which was adopted for continuous simulations (Riedel, 2004). Potential
evapotranspiration is derived using the Penman–Monteith method (Monteith, 1965).
The calculation of actual evapotranspiration depends on the amount of intercepted
water and soil water storage. For each HRU the runoff is subdivided into surface runoff,
interflow, and base flow for each time step. A subdivision assuming two groundwater25

storages is also possible. Then these runoff components are aggregated to obtain the
respective values for the superordinate sub-catchment. Routing is not only available
for sub-catchments but also for reservoirs, retention structures, culverts and other
features.
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A detailed hydrological model of the Sieber catchment for PANTA RHEI derived in
an ongoing climate change research project was available for this study (Hölscher
et al., 2012). The catchment was sub-divided into 73 sub-catchments which account
for a mean area of 0.6 km2. Redirections of water due to channels associated to the
Upper Harz Water Management System were also considered presuming mean annual5

and seasonal flow rates. The calibration of the model was carried out using longterm
simulations based on daily meteorological data ranging from 1971 to 2000 and hourly
precipitation time series ranging from 2002 to 2008. The snowmelt models were
calibrated separately using only the meteorological data from dynamical downscaling
for the winter season 2005/06, whereas the winter season 2010/11 is viewed as10

validation period.

3 Results and discussion

3.1 Meteorological fields

In a first step, we compared the meteorological data fields derived by WRF
with observations from meteorological stations. This comparison provides a first15

assessment of the accuracy of the dynamical downscaling of global atmospheric
analysis data for the study area. In this paper, only precipitation and temperature time
series are displayed. The obtained high accuracy of other meteorological variables is
described by Förster (2013).

Figure 4 depicts the cumulative mean areal precipitation based on observations20

from the precipitation gauge network and the WRF simulations for the winter season
2005/06. The cumulative precipitation is derived by calculating the arithmetic mean of
19 stations and 19 corresponding grid points of the atmospheric model, respectively.
These stations are situated in the Harz Mountains and its vicinity. The course (mass
curves) of simulated precipitation coincides reasonably well compared to observations.25

However, the sum of simulated precipitation only accounts for 81 % of the observed
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areal mean. During the melt season, which falls at the end of March and the
beginning of April 2006, simulated precipitation intensities are substantially lower than
observed intensities. The correlation of six-hourly intensities is 0.66. The deviation
between observed and simulated precipitation is obviously caused by uncertainties
involved in the original analysis data and the downscaling process with regard to the5

heterogeneous orographic conditions of the small project region (upwind and downwind
effects).

In general, temperature simulations match observations better than precipitation
simulations do. The temperature time series of the WRF grid point that correspondents
to the location of Torfhaus station was evaluated (Fig. 5). The simulated time series10

matches observations at Torfhaus very closely which is reflected in the high correlation
of 0.93. Nevertheless, the statistics reveal that the simulation is biased towards colder
temperatures. The mean simulated temperature is 0.7 K lower than the mean value
(−1.2 K) of the observed time series. This becomes also evident when considering the
underestimation of maximum temperatures as shown in Fig. 5.15

All other relevant meteorological variables were also simulated well. As indicated
above, the accuracy of the time series of precipitation was statistically reasonable but
not sufficient to be used as an input into snowmelt and hydrological modelling in this
context. Since precipitation intensity is crucial during rain on snow events, we decided
to use observed precipitation time series for snowmelt simulations instead. However,20

temperature, humidity, wind speed, as well as shortwave and longwave radiation from
WRF simulations were used for snowmelt calculations at both scales.

3.2 Point scale simulations

As described in the previous section, all relevant meteorological variables except for
precipitation were used for snowmelt modelling on the basis of WRF simulations. The25

time series of the model grid cell corresponding to Torfhaus meteorological station
were used as input for snowmelt modelling. All simulations were carried out using
a time step of one hour for the entire winter season (1 November 2005–1 May 2006
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as well as 1 November 2010–1 April 2011). Figure 6 shows the results for the melt
event in the spring of 2006 at Torfhaus (calibration period). For each snowmelt model
simulated runoff as well as snow water equivalent time series are plotted. Every sub-
plot shows the melt runoff recorded by the lysimeter. Cumulative runoff time series
for both model and observation can easily be related to snow water equivalent and5

cumulative precipitation.
In total, all snowmelt models simulate the melt runoff well and in agreement

with observations. Total melt as well as diurnal features are captured by all model
simulations. All models tend to overestimate melt runoff during the first days of the melt
event. The peak runoff at 31 March 2006 is also overestimated by all tested models.10

There is still a snow pack remaining in all simulation runs at the end of the melt event
whereas the automated snow depth recordings indicate a complete ablation of the
snow cover. In contrast, melt runoff was still observed even though no precipitation
was recorded during this period. Hence, the results from the simulation runs seem to
be realistic.15

The validation of the models was performed using data of the winter season 2010/11
(Fig. 7). Modelled runoff melt time series coincide well compared to the recorded
lysimeter observations. Especially the Utah Energy Balance Model and ESCIMO
closely match observations.

Figure 10a illustrates a statistical summary of each point scale simulation run with20

respect to the recorded melt runoff time series. This type of diagram is described by
Taylor (2001) and therefore herein referred to as Taylor diagram. Each point represents
the model performance of one simulation run. Ordinate and abscissa refer to the
standard deviation of the time series. The angle between the abscissa and the lines
representing the shortest distance of each point to the origin is related to the correlation25

between observation and model run. The radial distance of each point to the origin
represents the standard deviation of the model run. The geometric relationship of the
Taylor diagram also incorporates the central pattern root mean square error (RMSE)
between observation and model run which correspondents to the concentric isolines.
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These isolines are centered by the observation point. By definition the correlation of
the observation is 1.0 and the RMSE is 0.0, respectively.

To conclude, the Taylor diagram enables a simple overview considering multiple
simulation runs incorporating more than one statistical parameter for evaluation of
model performance. In contrast to one single statistical parameter indicating model5

performance, it allows for determining whether the differences are caused due to phase
shifts or disagreements in amplitudes (Taylor, 2001). Due to normalization of standard
deviations (the standard deviation of the observation is set to unity), a comparison
of simulation runs referring to different reference datasets (observations) is possible
because the RMSE is also normalized by this procedure.10

Values of correlation range from 0.67 to 0.95 for the selected snowmelt models
(Fig. 10a). RMSE extends over the range between 0.3 and 0.8. The normalized
standard deviation of the simulation runs ranges from 75 to 130 % indicating that some
models underestimate the amplitude of melt runoff whereas others overestimate the
variability. For instance, the overestimation of melt runoff calculated by ESCIMO in15

2006 is reflected by relatively high values of RMSE and normalized standard deviation.
However, the timing of the model is still good which is expressed in the high correlation
value.

The results for the validation period (2010/11) are generally better. In total it is
concluded, that the use of a snowmelt model clearly improves the simulation results.20

All snowmelt models show a better performance than the simple assumption that all
precipitation throughout the winter is rain (“no snow”). Based on these results, the
Utah Energy Balance Model seems to perform best at Torfhaus. The ranking of models
should, however, be interpreted with caution because only two winter seasons were
evaluated.25

3.3 Catchment scale simulations

According to the previous section, all snowmelt models were likewise applied using
PANTA RHEI for the Sieber catchment. For ESCIMO the canopy extensions were
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used for all areas covered by forests. All simulations cover the entire winter season as
mentioned in the previous section. Calibrations were carried out for the winter season
2005/06. Again, only the snowmelt components were calibrated at this stage. The other
components of the hydrological model like retention parameters and the soil model had
already been calibrated independently using longer time series (Sect. 2.5).5

Since three quarters of the Sieber catchment are covered by forest, an adaption
to the point scale parameter sets was necessary. Thus, the calibration procedure
focused on the consideration of these effects. The manual calibration of the Utah
Energy Balance Model including the highest number of adjustable parameters was
not easy. Several combinations of parameter settings including the choice of an10

appropriate forest cover fraction led to similar results which were all very good. This
issue is related to the problem of equifinality which is inherent when adapting point
scale equations to larger scales (e.g., Beven, 2002; Kirchner, 2006). In contrast to
all other tested snowmelt models, ESCIMO includes a detailed model component
to simulate snow processes in canopies (thus, the model is hereinafter referred to15

as ESCIMO+Canopy). This model utilizes the spatial distribution of LAI values in
the Sieber catchment. These LAI values for several land use classes have been
provided in terms of lookup tables that were derived from literature review (e.g., Breuer
et al., 2003). Hence, ESCIMO+Canopy should account for the change in dominant
processes due to upscaling, which includes, e.g., canopy effects on the energy balance20

when considering areal elements instead of idealized point scale considerations.
Figure 8 shows the results of each snowmelt model according to the previous section

but for the entire winter season including the accumulation period. The simulated
streamflow tracks the observed streamflow very well for all snowmelt models. Both the
rain on snow event at the end of March to the beginning of April and the subsequent25

smaller flood in mid-April are simulated with high accuracy by all snowmelt models. The
simulations of the first flood peak in December seem to be heavily dependent on how
the model separates rain and snow. However, the snowpack evolution is simulated in
accordance by all models. Because basin scale observations of snow water equivalent
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are not available, it is not clear which model is most accurate in simulating snowpack
evolution.

The results of the validation period (winter season 2010/11) are shown in Fig. 9.
The tested snowmelt models perform well compared to observations. The flood peak
in January 2011 yielding 26 m3 s−1 is underestimated by all models. It ranges from5

14 m3 s−1 (temperature index approach) to 19 m3 s−1 (modified Walter approach). From
Fig. 9 it can be seen that the observed as well as the simulated runoff depth exceed the
observed areal precipitation which is also used as an input for all models used herein.
Possible explanations for this mismatch could include a lack in representativeness of
observed precipitation and streamflow data or even uncertainties related to the settings10

of initial conditions. However, the timing of snowmelt seems to be simulated well by all
models.

Since basin scale snow water equivalent estimates were not available, statistics were
prepared for streamflow time series. Figure 10b summarizes the statistical evaluation
of all simulation runs for the Sieber catchment using a Taylor diagram. Since Fig. 10b15

is also normalized with respect to standard deviation and RMSE, a comparison with
the point scale results (Fig. 10a) is possible. At first, the catchment scale results
are discussed independently. Regarding the statistics from the Taylor diagram, the
differences in performance parameters are small. For all model runs, except one,
a correlation higher than 0.9 is achieved. RMSE values account for 0.25 to 0.5 times20

the standard deviation of the observation time series. All models perform clearly better
than the “no snow” assumption and indicate the relevance of snow processes for the
water balance of the Sieber catchment. It is worth to note that all energy balance
approaches perform better than the proven temperature index approach whereas the
modified Walter approach matches the patterns of observed time series best at this25

scale.
Obviously, the different ways in which forest effects are accounted for by the

snowmelt models do not have a major impact on the results for the Sieber catchment
simulations because all model simulations are in good agreement with observations.

4079

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/4063/2014/hessd-11-4063-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/4063/2014/hessd-11-4063-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 4063–4102, 2014

Modelling of snow
processes by means

of downscaled
meteorological fields

K. Förster et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

However, the explicit treatment of snow-canopy interaction as incorporated by
ESCIMO+Canopy enables a more reliable simulation of sublimation in forests.
Figure 11 shows the cumulative net water vapour mass flux of the Utah Energy
Balance Model and ESCIMO+Canopy for both point and catchment scale applications,
respectively. During the winter season a gain of water vapour is simulated at Torfhaus5

using both the Utah Energy Balance Model and ESCIMO (point scale). Highest
condensation rates were simulated during the rain on snow event at the end of
March and at the beginning of April, respectively. When using the Utah Energy
Balance Model, a net water vapour gain of 15 mm for the entire Sieber catchment
is calculated. With ESCIMO+Canopy, a net loss of water vapour of even 40 mm is10

calculated for the Sieber catchment although the results indicate condensation during
the rain on snow event too. Sublimation losses can typically occur in forests due
to the exposure of intercepted snow to higher turbulent exchange and higher solar
radiation input when compared to beneath-canopy (turbulent exchange and shortwave
radiation are reduced) and open site (turbulent exchange is in general lower due to15

lower roughness) conditions, respectively. Since ESCIMO+Canopy features these
processes, the difference in Fig. 11 can be related to the different level of processes
representation.

The point and the catchment scale results reveal that the differences in model
performance are smaller for the catchment scale. At catchment scale many more20

hydrological processes have to be incorporated for the simulation rather than
exclusively considering snowmelt processes at the point scale. Other hydrological
processes become more dominant when scaling up from the point to the catchment
scale. Typically, the relevance of snowmelt on floods decreases with an increase of
scale.25

When comparing the results from both scales in Fig. 10, it is interesting to note
that the ranking of the energy balance models is in reverse order. As explained in the
previous section, model ranking should be interpreted with caution due to the fact that
only two sites and two winter seasons were considered for this study.
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4 Summary and conclusions

A dynamical downscaling approach using global atmospheric analysis data to force
snowmelt models at different scales was tested. To derive meteorological data fields
we applied the Weather Research and Forecast model (WRF) driven by NCEP analysis
data. The meteorological fields including precipitation, temperature, humidity, wind5

speed, shortwave radiation, and longwave radiation were prepared as gridded datasets
for hourly time steps. Four snowmelt models including three energy balance models
were set up for point and catchment scale applications. For the latter, all energy balance
approaches were added to the hydrological modelling system PANTA RHEI.

The meteorological data fields were extensively evaluated using time series from the10

existing meteorological station network. It was not possible to simulate precipitation
time series with high accuracy at the considered scales. For the other relevant
meteorological variables the simulated time series match surface observations better.
Therefore, we decided to apply all meteorological variables as boundary conditions
for snowmelt modelling at the point and the catchment scale, with the exception of15

precipitation. Instead, observed precipitation time series were used for that reason.
All snowmelt simulations perform well at both the point and the catchment scale. The

statistical evaluation revealed that the snowmelt models consistently better match the
observations if compared with the “no snow” assumption. These findings emphasize
the need to include accurate snowmelt modelling for the study area including both point20

and catchment scale applications. In general, the differences in model performance
are smaller at the catchment scale where other hydrological processes are also
relevant. Although the detailed canopy model does not significantly improve snowmelt
simulations, for other sites the total sublimation losses can exceed the relative low
value of 5 % calculated for the Sieber catchment (see, e.g., Strasser et al., 2008).25

On the other hand, the problem of equifinality is evident when considering very
complex physical models adapted to large scale applications. Several sets of effective
parameters yield similar results when using the Utah Energy Balance Model with
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PANTA RHEI. Hence, scaling approaches according to Clark et al. (2011) should be
considered.

Besides these scaling issues, the presented approach could be applied successfully.
The meteorological fields derived from dynamical downscaling using WRF with
analysis data match the observations well, except for precipitation. Furthermore, this5

study contributes to the ongoing discussion about the need for providing physically
based modelling approaches in areas where only a few observations are available. In
addition, physical models are said to be more reliable for meteorological conditions
that are not covered by the datasets used for calibration. In conclusion, the presented
approach might be suitable to derive reliable estimates on snow water resources10

in remote areas. Other fields of application could include snowmelt model inter-
comparison studies at the catchment scale.
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Table 1. WRF physics parameterization setup. Brief descriptions of the physics
parameterizations are also given by Wang et al. (2012) and Skamarock et al. (2008).

Processes Parameterization

Cloud microphysics Morrison et al. (2009)

Convection Kain–Fritsch scheme (Kain, 2004)

Boundary layer Yonsei University scheme (Hong et al., 2006)

Land surface processes Noah land surface model (LSM) (Chen and Dudhia, 2001)

Shortwave radiation Dudhia (1989) scheme

Longwave radiation Rapid Radiative Transfer Model (Mlawer et al., 1997)
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Fig. 1. Map of the study area including the Sieber catchment located in the Harz Mountains,
northern Germany. The Harz National Park boundary is provided by OpenStreetMap,
© OpenStreetMap contributors (http://www.openstreetmap.org/copyright).
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Fig. 2. WRF domains of the study area. The resolution of the first (outer) domain is 30 km, the
fourth and final (inner) domain’s resolution is 1.1 km, respectively.
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representation of the snowmelt processes.
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Fig. 4. Comparison of observed and simulated mean areal precipitation depth. The cumulative precipita-
tion depth is derived by calculating the arithmetic mean of 19 stations and 19 corresponding grid points
of the limited-area model, respectively.
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Fig. 4. Comparison of observed and simulated mean areal precipitation depth. The cumulative
precipitation depth is derived by calculating the arithmetic mean of 19 stations and 19
corresponding grid points of the limited-area model, respectively.
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Fig. 5. Comparison of simulated and observed temperature time series at Torfhaus meteorological station.
For other meteorological time series, it is referred to Förster (2013)
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Fig. 5. Comparison of simulated and observed temperature time series at Torfhaus
meteorological station. For other meteorological time series, it is referred to Förster (2013).
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Fig. 6. Snowmelt simulations at the point scale for the winter season 2005/06. Statistics refer to the pe-
riod 25 March 2006 to 09 April 2006. a) Temperature-Index approach, b) modified Walter et al. (2005)
approach, c) Utah Energy Balance model, and d) ESCIMO. For every simulation run observed precip-
itation depth (Pobs), observed runoff (∆robs, blue line) including observed runoff depth (blue dashed
line), observed snow depth (Hobs), simulated runoff (∆rs, red line) including simulated runoff depth
(red dashed line), and simulated snow water equivalent (SWEs) are plotted.
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Fig. 6. Snowmelt simulations at the point scale for the winter season 2005/06. Statistics refer to
the period 25 March–9 April 2006. (a) Temperature-Index approach, (b) modified Walter et al.
(2005) approach, (c) Utah Energy Balance model, and (d) ESCIMO. For every simulation run
observed precipitation depth (Pobs), observed runoff (∆robs, blue line) including observed runoff
depth (blue dashed line), observed snow depth (Hobs), simulated runoff (∆rs, red line) including
simulated runoff depth (red dashed line), and simulated snow water equivalent (SWEs) are
plotted.
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Fig. 7. Snowmelt simulations at the point scale for the winter season 2010/11. Statistics refer to the
period 05 January 2011 to 20 January 2011. See Fig. 6 for further explanations.
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Fig. 7. Snowmelt simulations at the point scale for the winter season 2010/11. Statistics refer
to the period 5–20 January 2011. See Fig. 6 for further explanations.
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Fig. 8. Snowmelt simulations at the catchment scale for the winter season 2005/06. a) Temperature-
Index approach, b) modified Walter et al. (2005) approach, c) Utah Energy Balance model, and d)
ESCIMO+Canopy. For every simulation run observed precipitation depth (Pobs), observed streamflow
(Qobs, blue line) including observed runoff depth (blue dashed line), simulated streamflow (Qs, red line)
including simulated runoff depth (red dashed line), and simulated snow water equivalent (SWEs) are
plotted.
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Fig. 8. Snowmelt simulations at the catchment scale for the winter season 2005/06. (a)
Temperature-Index approach, (b) modified Walter et al. (2005) approach, (c) Utah Energy
Balance model, and (d) ESCIMO+Canopy. For every simulation run observed precipitation
depth (Pobs), observed streamflow (Qobs, blue line) including observed runoff depth (blue dashed
line), simulated streamflow (Qs, red line) including simulated runoff depth (red dashed line), and
simulated snow water equivalent (SWEs) are plotted.
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Utah Energy Balance
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ESCIMO + Canopy
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Fig. 9. Snowmelt simulations at the catchment scale for the winter season 2010/11. See Fig. 8 for further
explanations.
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Fig. 9. Snowmelt simulations at the catchment scale for the winter season 2010/11. See Fig. 8
for further explanations.
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Fig. 10. Taylor diagrams including the results of snowmelt simulations: a) point scale simulations and b)
catchment scale simulations.
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Fig. 10. Taylor diagrams including the results of snowmelt simulations: (a) point scale
simulations and (b) catchment scale simulations.
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Sieber/ESCIMO
Sieber/Utah
Torfhaus/ESCIMO
Torfhaus/Utah

Fig. 11. Simulations of the net water vapour mass flux as calculated by ESCIMO and the Utah Energy
Balance Model for the Sieber catchment and Torfhaus meteorological station. Positive values refer to a
gain of water vapour due to condensation or resublimation whereas negative values indicate sublimation
losses from the snowpack.
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Fig. 11. Simulations of the net water vapour mass flux as calculated by ESCIMO and the Utah
Energy Balance Model for the Sieber catchment and Torfhaus meteorological station. Positive
values refer to a gain of water vapour due to condensation or resublimation whereas negative
values indicate sublimation losses from the snowpack.
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